
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713708471

CASCADES FOR SEPARATION OF MULTICOMPONENT ISOTOPE
MIXTURES
Georgy A. Sulaberidzea; Valentin D. Borisevicha

a Moscow State Engineering Physics Institute (Technical University), Moscow, Russian Federation

Online publication date: 30 July 2001

To cite this Article Sulaberidze, Georgy A. and Borisevich, Valentin D.(2001) 'CASCADES FOR SEPARATION OF
MULTICOMPONENT ISOTOPE MIXTURES', Separation Science and Technology, 36: 8, 1769 — 1817
To link to this Article: DOI: 10.1081/SS-100104761
URL: http://dx.doi.org/10.1081/SS-100104761

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713708471
http://dx.doi.org/10.1081/SS-100104761
http://www.informaworld.com/terms-and-conditions-of-access.pdf


CASCADES FOR SEPARATION OF
MULTICOMPONENT ISOTOPE MIXTURES

Georgy A. Sulaberidze* and Valentin D. Borisevich

Moscow State Engineering Physics Institute 
(Technical University), 31 Kashirskoe Shosse, 

Moscow 115409, Russian Federation

ABSTRACT

This article reviews and analyzes the state-of-the art on separation of
multicomponent isotope mixtures in cascades. Different methods,
which are applied to calculate the cascade configurations and de-
signs as well as those used to describe some transient processes in
cascades when separating multicomponent isotope mixtures are dis-
cussed and analyzed in detail. The main directions for the further de-
velopment of isotopes fractionation using cascades are formulated.

INTRODUCTION

Production of many types of isotopes, which are widely used in different
fields of science and technology, is tightly connected with separation of multi-
component isotope mixtures and in many instances with concentration and recov-
ery of intermediate (by mass) components of desired purity. The theory of sepa-
ration of multicomponent isotope mixtures is complicated by the necessity to
account for the reciprocal influence of all components on the resultant transfer of
desired isotopes. Despite numerous achievements in this field many problems still
remain to be solved.
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The development of theory for separation of multicomponent isotope mix-
tures started in 1961 by A. de la Garza (1). Many published papers (1–10,13–18,
24–35) are devoted to the creation of theory for countercurrent cascade under the
assumption that the single separation effect is small and does not depend upon
composition of the mixture (component concentrations). This assumption is
known to be valid for separation methods such as, gas diffusion, thermodiffusion,
mass diffusion, and cryogenic distillation. The peculiarities of calculations for
cascades with higher enrichment degrees at each stage that is observed, for exam-
ple, in cascades composing ultracentrifuges or membrane separative elements
have been reviewed (11,12,19–23).

The main goal of this study is to critically review and analyze the literature
(published by both the authors of the present paper and other researchers) on sep-
aration of multicomponent isotope mixtures in cascades and to formulate the ba-
sic trends for further development of this particular field of Separation Science.

GOVERNOR CASCADE EQUATIONS FOR STATIONARY
OPERATING REGIME

Let us imagine a cascade, which is intended for separation of m isotope com-
ponents (m � 3) or a m-component gas mixture, as a N-stages row consecutively con-
nected by a countercurrent scheme where the flow recirculation can be realized. The
flowsheet of the cascade under consideration is shown schematically in Fig. 1. The
flux LS with component concentrations Ci (S) is entering into the S-th stage. The 
“upflowing” flux LS

� � �SLS with concentrations Ci
� (S) from the S-th separation

stage (where �S is the cut of the stage) goes to the entrance of (S � 1)-th stage. The
“downflowing” flux LS

� � (1 � �S)LS having the composition of Ci
� (S) is incom-

ing to the entrance of (S � 1)-th stage. Let us consider a simple cascade where the
feed F with composition of CiF(i � 1, 2, . . . , m) is introduced into its entrance (S �
ƒ). The product flux P (product) with composition of CiF (i � 1, 2, . . . , m) and the
waste flux W (waste) with the component mole fractions of CiW(i � 1, 2, . . . , m) are
withdrawn from the cascade outlet in the points S � N and S � 1, respectively.

It must be emphasized that the “product” and “waste” concepts are relative in
the case of multicomponent mixture separation. We will consider that the product
is collected from the outlet of cascade where the lightest isotope is concentrated
while the waste is withdrawn from the opposite one. For the sake of definition, let
us distribute the mixture components in the order of their growing molecular masses
Mi(i � 1, 2, . . . , m). The equations that allow calculation of cascade can be obtained
by combining the mass-balance equation by the total flow with that by the flow of
each component through the cross-section between S-th and (S � 1)-th stages:

�SLS � (1 � �S�1) � P;

�SLSCi
� (S) � (1 � �S�1)LS�1Ci

�(S � 1) � PCiP
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The main enrichment equation for the cascade can be written as follows:

Ci (S � 1) � Ci(S ) ��
(1 � �

�

S

S

�

L

1

S

)LS�1
��i

�(S) 

� �i
�(S � 1) ��

(
P
1

(
�

CiP

�

�

S�

C

1)
i

L
(S

S�

))

1
�,

(1)

i � 1, 2, . . . , m; S � ƒ, . . . , N;

where �i
� � Ci

� � Ci � ƒi(Ci, . . . , Cm, �) is the known function of concentra-
tions and cut, which accounts for the changes of content of the i-th component in

SEPARATION OF MULTICOMPONENT ISOTOPE MIXTURES 1771

Figure 1. Schematic diagram of countercurrent cascade.
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the mixture at a given stage and �i
� and �i

� � Ci � Ci
� are connected by the fol-

lowing balance equation: �i
� � �/(1 � �)�i

�.
For the stripping section of the cascade, the flux P and the concentration CiP

must be substituted with the flux W taken with an opposite sign and with the con-
centration CiW, respectively. In this case, Eq. (1) takes the form:

Ci(S � 1) � Ci(S) ��
(1 � �

�

S

S

�

L

1

S

)LS�1
��i

�(S ) 

� �i
�(S � 1) ��

(
W
1

(
�

Ci

�
W

S

�

�1

C
)L

i (

S

S

�

)

1
�

(2)

where i � 1, 2, . . . , m, and S � 1, 2, . . . , ƒ � 1.
For carrying out the cascade calculations, one needs to add to Eqs. (1) and

(2) the following m linear-independent balance equations for the cascade as a
whole:

FCiF � PCiP � WCiW, i � 1, 2, . . . , m � 1; (3)

F � P � W (4)

In the case of small enrichment at a single separating stage, the value of �i
�

for any separation method may be written as follows (2):

�i
� � (1 � �)Ci ∑

m

j�1
	ijCj, (5)

where 	ij is the relative enrichment coefficient for the system of i and j compo-
nents possessing the additive and anti-symmetric properties:

	ij � �	ji,

	ij � 	ik � 	kj.
(6)

Small 	ij value suggests that all cascade parameters are changing negligibly
from stage to stage, and the flow of the isotope mixture passing through an arbi-
trary stage is much higher than the product flow. Under these conditions, LS �
LS�1 and P/LS � 0. Assuming this approximation to be valid for separation of any
isotopes, it is easy to obtain the following correlation, �s � 1/2, from the balance
equations for the whole mixture and for each component. The transfer from Eqs.
(1) and (2) finite-difference equations to the differential ones, along with taking
into account expression (5), gives after simple rearrangements the following equa-
tions:

�
d
d
C
S

i
� � Ci ∑

m

j�1
	ijCj � �

L
2
(
P
S)
� (CiP � Ci), (7)

0 
 S 
 SP(SP � 1 � N � ƒ),

i � 1, 2, . . . , m � 1,
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∑
m

i�1
Cj � 1,

�
d
d
C
S

i
� � Ci ∑

m

j�1
	ijCj � �

L
2
(
W
S)
� (CiW � Ci), (8)

0 
 S 
 SW(SW � ƒ),

i � 1, 2, . . . , m,

∑
m

j�1
Cj � 1.

Here SP and SW are the numbers of stages in the enriching and the stripping sec-
tions of the cascade, respectively; S is the current number of a stage in both parts
of the cascade. The stages in the stripping section are numbered from the bottom
stage to the feed one, and in the enriching section, the numeration goes from the
feed to the top stage.

The analysis of Eqs. (1) and (2) and (7) and (8) enables us to distinguish the
following properties of cascade equations.

1. The above equations represent the system of both nonlinear finite dif-
ference and differential equations in respect to functions Ci(S). Corre-
sponding CiP and CiW values in these equations must be defined from
the solution of these particular equations. The analytical solution of a
similar system of equations is possible only in some specific cases. Un-
der conditions of arbitrary distribution of the L(S) value, the numerical
solution of equations can be obtained in the following cases.

2. When the product withdrawal is equal to 0 (P � 0) the system of Eqs.
(7) and (8) is easily integrated giving the following solution:

Ci(S ) � ,

i � 1, 2, . . . , m,

(9)

where Ci(0) is the concentration of the i-th component at the inlet of the
zero stage (stage number S � 0).

As follows from relationship (9), the concentration distribution
along the cascade stages does not depend on the flow distribution L(S).
The analysis of Eq. (9) shows that in a cascade of sufficient length, the
concentrations of all intermediate components achieve the maximum
value inside the cascade while the concentration of edge components are
monotonously increasing to the end of cascade. The phenomenon of re-
distribution of components followed by their concentration in different
cascade zones can be easily explained from the physical viewpoint. In-
deed, the separation in a cascade can be considered to proceed under the

Ci(0)
���

∑
m

j�1
Cj(0) exp(�	ijS)
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action of the field of force with a constant stress. Interaction of compo-
nents in this field results in ejecting of less “active” components by the
most active ones out of the cascade ends. The less active components, in
turn, affect the redistribution even more actively.

3. From the analysis of Eqs. (1) and (2) and (7) and (8), it directly follows
that it is impossible to design a cascade for separation of a multicom-
ponent mixture under no-mixing conditions at the entrances of all
stages would be fulfilled for all component concentrations simultane-
ously. The last conclusion follows from the fact that the mass transfer
of all components in the cascade is described by the system of m equa-
tions while only one parameter, L(S), is responsible for providing of no-
mixing conditions.

4. Since at arbitrary number of the mixture components enrichment of the
lightest one, �1 � C1 ∑m

j�1 	1jCj, at each stage is always positive and
enrichment of the heaviest component, �m � Cm ∑m

j�1 	mjCj, is always
negative, their separation and further recovery are not difficult. On the
contrary, fractionation (and recovery) of the intermediate isotope com-
ponents is complicated as their enrichment depends on the mixture
composition. Therefore, at some distance from the cascade feed point,
their concentration does not increase any more. This means that only a
limited enrichment of the intermediate isotopes in the product flux can
be obtained. The problem of separation and recovery of the intermedi-
ate isotope components can be solved through selection of the L(S) pro-
file providing the maximum content of the desirable component in the
product (or waste) flux. It has been shown by Minenko (3) that in the
cascade with the single product and waste fluxes the limited concentra-
tion of an arbitrary n-component at Sp, Sw � 1 is defined by

(CnP)lim � (10)

In practice, it is often required to obtain the concentration of the intermedi-
ate component, which exceeds the value predicted by Eq. (10). In this case it is ad-
visable either to introduce some additional fluxes in the zone of localization of de-
sired component or to use more complicated cascade designs such as, double
cascade and some others.

The problem of the cascade calculation using Eqs. (1) and (2) and (7) and
(8) includes two approaches:

1. calculation of a cascade of specified configuration (check calculation),
and

2. calculation of a cascade to be designed (design calculation).

CnF
�

∑
n

j�1
CjF
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The first approach involves, as a rule, calculation of 1) simple or squared-off cas-
cades with a specified number of stages; 2) the fluxes in stripping and enriching
sections; 3) the feed flux F with component concentrations CiF(i � 1, 2, . . . , m);
and 4) one of the outgoing fluxes P or W. The relative enrichment coefficients 	ij

or enrichment functions �i
� � Ci

� � Ci � ƒ(C1, . . . , Cm, �) are considered to be
known. The final aim of the calculation task is to define the component concen-
trations in the product flux, CiP(i � 1, 2, . . . , m), in the waste flux CiW(i � 1, 2, 
. . ., m), and the concentration distribution along the cascade, if necessary. If the
enrichment at the cascade stages is not small, the cut distribution along the cas-
cade �S should also be specified. The calculations of this type are required to op-
timize the separation process through the change of the operating conditions and
individual cascade parameters, and in the multipurpose use of the cascade, for ex-
ample, for separation of a wide range of isotopes without significant modification
of the cascade design. The main difficulty in carrying out check calculations is due
to unknown values of concentrations CiP and CiW in Eqs. (1)–(2) and (7)–(8). Im-
possibility to solve analytically these equation systems calls for development of
numerical simulation methods, which would be non-sensitive to the initial ap-
proximation of the component concentrations.

In the design calculation, one usually defines the parameters of the square
or squared-off cascade with the specified concentration of one of the components,
for example, the desirable component in the product or waste fluxes, and the value
of the product (waste) flux. It is also implied that the cascade parameters under ex-
amination have to satisfy at best the conditions of its optimization. In the case of
separation of binary mixtures, the design calculation of the squared-off cascades
is based on the ideal cascade model. By the analogy, the design and optimization
of cascades for separation of multicomponent mixtures is expediently carried out
on the basis of the mathematical model, which is adequate for the separation pro-
cess but allows simplification calculations. In this case, by means of an artificial
choice of the flow profile, one can reach the most effective enrichment of the de-
sirable component in the cascade.

NUMERICAL METHODS FOR CALCULATION OF
CASCADES WITH SPECIFIED CONFIGURATION

Calculation of a cascade of specified configuration (with a specified num-
ber of stages and flows in the enriching and stripping sections) is based on two ap-
proaches. The first one is advisable to use for calculation of so-called “long” cas-
cades (for example, squared-off cascade of distillation columns). It is based on
either analytical transitions enabling reduction of the problem to the algebraical
transcendental equations (2,4–8) or on the direct integration of Eqs. (7)–(8) with
subsequent iteration on the boundary conditions and balance Equations (9,25).
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This approach also involves the orthogonal-collocation technique consisting of
the approximation of solution of differential equations by an interpolational La-
grangian polynomial (10).

Check calculations of the cascade with relatively high (non-small) enrich-
ment of components at each stage are based either on the stage-by-stage calcula-
tion of the component concentrations from one end of the cascade to another by
using Eqs. (1) and (2) with iterative refinement of the concentration values (11),
or on solution of the matrix equations for the total and component balance over the
cascade (12). Taking into account the features of computation process, the or-
thogonal-collocation technique (11) and the matrix technique (12) seem to be the
most efficient for solution of the above problems. The description of these meth-
ods is given below.

Cascade Calculation by Using Orthogonal Collocation Technique

The calculation methods reported previously (2,4–9,24) although possess-
ing some advantages have significant deficiencies. First, they require considerable
computer time. This is due to the need for cumbersome calculations at each itera-
tive step in refining the concentration values. Second, these methods necessarily
involve initial approximations of the component concentrations at the ends of the
cascade that make them very sensible to the ratio of initial approximation to exact
solution. Third, all these methods are characterized by low accuracy, (particularly
for cascades with a high number of stages) due to accumulation of errors in cal-
culating the component concentrations.

Let us now consider the method for calculation of cascades that is essentially
free from the above deficiencies. For the sake of simplicity, let us consider an or-
dinary squared cascade with the feed, F, product, P, and waste, W, fluxes, respec-
tively. The corresponding component concentrations in fluxes are CiF, CiP and CiW

(i � 1, 2, . . . , m). The transfer of components along the cascade is described by the
system of Eqs. (7)–(8) along with respective equations of the total and component
balance (3)–(4) under assumption of the constant value of the flow L. Equations
(7)–(8) and (3)–(4) should be complimented by the following boundary

Ci
I(0) � CiW, Ci

II(SP) � CiP, i � 1, 2, . . . , m (11)

and continuity condition for component concentrations in the feed input cross-sec-
tion

Ci
I (SW) � Ci

II (O) � Cif, i � 1, 2, . . . , m, (12)

where Cif is the concentration of the i-th component in this cross-section, and su-
perscripts I and II characterize the stripping and the enrichment sections of the
cascade, respectively.
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As follows from the orthogonal-collocation method, solution of the differ-
ential equation is sought in the form of a polynomial or series. The interpolational
Lagrangian polynomial used by Tarng and Anthony (35) as the approximating op-
erator, can be written for the enrichment section as follows:

Ci (S ) � ∑
n

k�1
Ck

Pi (S ) LPk, i � 1, 2 . . . , m, (13)

where LPk � Tn/[(S � Sk)T 1
n (S)] is the Lagrangian polynomial of the order 

(n � 1); Tn(S) � (S � S1)���(S � Sn) is the point polynomial of order n; Sk, 0 
 S

 Sp, k � 1, 2, . . . , n is the collocation point, and Ck

Pi � Ci (Sk), i � 1, 2, . . . , m
is the corresponding ordinate of the collocation point.

Without loss of generality, it is assumed that the number of collocation
points n chosen for the enriching and stripping sections is the same. Then, for the
stripping section the Lagrangian polynomial determining Ci (S ) takes the form
Ci(S) � ∑n

k�1 Ck
WiLWk (S), i � 1,2, . . . , m. The real zeros of orthogonal polyno-

mials are usually chosen as the collocation points to attain the highest calculation
accuracy. In Fillipov et al. (10), n collocation points required are defined as fol-
lows: if k � 1, then Sk � 0; if k � 2, . . . , n � 1, then Sk � S
 (Xk � 1)/2; if k �
n, then Sk � S; here S
 is the number of stages in the section; Xk � cos {[2(n � k) 
� 1]�/2(n � 2)} are the zeros of an orthogonal Chebyshev polynomial of order 
(n � 2).

The boundary conditions (11) and the continuity conditions for the compo-
nent concentrations in the cross-section of the feed flow are now written for the
orthogonal collocation method as follows:

S1 � 0, C1
Pi(S1) � Cif; Sn � SP, Cn

Pi(Sn) � CiP;

S1 � 0, C1
Wi(S1) � CiW; Sn � SW, Cn

Wi (Sn) � Cif, (14)

i � 1,2, . . . , m

Taking into account that Lk(Sj) � 0 when k � j, Lk(Sj) � 1 when k � j, and
after substitution of formula (13) into Eq. (7) for an arbitrary collocation point Sr,
one obtains

∑
n

k�1
Ck

PiLPk
(1) (Sr) � Cr

Pi��
2
L
P
� � ∑

m

j�1
	ijCr

Pj� � �
2
L
P
� Cn

Pi,

i � 1,2, . . . , m; r � 1,2, . . . , n

(15)

where LPk
(1) � T n

(2)(Sr)/[2Tn
(1) (Sr)] is the derivative of the Lagrangian polynomial at

point Sr. Analogously, for the stripping section one can write

∑
n

k�1
Ck

WiL
(1)
Wk (Sr) � Cr

Wi �� �
2
L
W
� � ∑

m

j�1
	ijCr

Wj� � �
2
L
W
� CWi

(1),

i � 1, 2, . . . m; r � 1, 2, . . . n

(16)
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The material balance Eq. (3) and the conditions for selection of the colloca-
tion point (14) yield the following expression combining Eqs. (15) and (16):

FCiF � PCn
Pi � WC1

Wi, Cn
Wi � C1

Pi, i � 1, 2, . . . , m (17)

Thus, the set of differential Eqs. (7)–(8) reduces to a system of nonlinear al-
gebraic equations with (2n � 1)m unknowns for determining the component con-
centrations in the mixture at the collocation points and hence, in the cascade out-
put fluxes. This system is solved by using the following method (36): instead of
one nonlinear system with (2n � 1)m, m linear systems with (2n � 1) unknowns
are solved, constantly refining the concentration values in an iterative procedure.
By calculating a squared-off cascade, one or more such nonlinear systems (ac-
cording to the number of sections) and fitting conditions at the section boundaries
analogous to the conditions at the feed flux cross-section must be added to Eqs.
(15) and (16).

The method under consideration is realized as a software in FORTRAN for
IBM PC and compatible computers. Let us illustrate the possibilities of the
method in calculation of the squared-off cascade for separation of oxygen and ni-
trogen isotopes by cryogenic distillation of nitrogen oxide under assumption of
absence of the isotope exchange (see Fig. 2). The cascade has two stripping and

Figure 2. Schematic diagram of squared-off cascade for separation of nitrogen and oxy-
gen isotopes by cryogenic distillation of NO.
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one enrichment sections. In the stripping sections (numbered from the feed point),
the section lengths and the circulation flows are as follows: S1W � 200, 
L1/2W � 2�103 and S2W � 100, L2/2W � 1�103. The length of the enrichment 
section is Sp � 100. The composition of the cascade feed and the values of rela-
tive enrichment coefficient for the components are presented in Table 1.

The calculated mole fractions for the mixture components at the ends of the
cascade in the feed and product fluxes F/W � 20, P/W � 19, respectively, are pre-
sented in Table 2.

In the example considered, the component i � 1 concentrates at the “light”
end of the cascade (in the product flux), and the rest components are extracted at
the “heavy” end (in the waste flux). The main characteristics, which is reflecting
the computational properties of the methods, are the number of manipulations of
the function being calculated (the computational work) required to achieve the nec-
essary accuracy in determining the desired unknowns (38). By calculating the cas-
cades, the function being calculated is the relative or absolute residual, the sum of
squares of the residuals, etc. For example, in Filippov et al. (10) this function is the
sum of the relative residuals in the waste flux at the iterative steps � and � � 1:

�1(�) � ∑
m

i�1
[CiW (�) � CiW (� � 1)]/CiW (�), (18)

Table 1. Natural Abundance and Relative Enrichment Coefficients for Isotopic Mix-
ture of Nitrogen Oxide (37)

Component, i Molecule CiF, Mole Fraction 	1i

1 14N16O 1 �∑
6

j � 2
CjF 0.000

2 14N17O 0.36865·10�3 0.017
3 15N16O 0.364120·10�2 0.025
4 14N18O 0.203255·10�2 0.034
5 15N17O 0.135000·10�5 0.042
6 15N18O 0.745000·10�5 0.059

Table 2. Calculated Mole Fractions for Mixture Component at Cascade Ends

Component, i Molecule CiP, Mole Fraction CiW, Mole Fraction

1 14N16O 0.99920�100 0.89400�100

2 14N17O 0.11687�10�8 0.51523�10�2

3 15N16O 0.54968�10�3 0.62380�10�1

4 14N18O 0.12411�10�3 0.38293�10�1

5 15N17O 0.35480�10�7 0.26326�10�4

6 15N18O 0.31140�10�7 0.14841�10�3

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
4
6
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



ORDER                        REPRINTS

1780 SULABERIDZE AND BORISEVICH

where CiW (�) is the concentration of the i-th component in the waste flux at the
�-th iterative step. The function �1(�) characterizes the convergence of the iter-
ative procedure and serves as a criterion for ending this process. However, con-
cluding the calculation on the basis of �1(�) does not guarantee convergence of
the problem to the exact solution. The exact solution is understood here to be the
solution to which the iterative process tends with an increase of the number of col-
location points in the cascade section. By denoting with CiW* the concentration
corresponding to exact solution, the degree of approximation to the exact solution
can be estimated from the following formula:

�2(
) � ∑
m

i�1
|[CiW* � CiW(
)]/CiW* |, (19)

where CiW(
) is the concentration of the i-th component in the waste flux deter-
mined with accuracy �1(�) for 
 collocation points in the section.

The results of numerical experiments show that only certain parameters
such as, configuration of the cascade (number of sections, their lengths and flow
values), the number of mixture components, mole fractions of components in the
feed flux, and the relative enrichment coefficients, affect the convergence of the
orthogonal-collocation method. The dependence of number of iterations on the
relative accuracy of calculation of component concentrations in the waste flux ob-
tained through the use of Eq. (18) with parameter values given above is shown in
Fig. 3. The increase of number of iterations at higher accuracy on CiW determina-

Figure 3. Dependence of number of iterations (�) on specified accuracy of calculations
of component concentrations in waste flow.
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tion is associated with the need to refine the concentration value at intermediate
collocation points. This refinement is required to provide the continuity of con-
centration at the junction of enrichment and stripping sections and to satisfy the
external component-by-component balance equation. Note that the number of it-
erations required to achieve the specified accuracy �1(�) does not depend on the
number of collocation points in the sections of the squared-off cascade.

The number of collocation points in a cascade section, the number of cas-
cade sections, and the number of components in the mixture influence the dimen-
sionality of equation system (15)–(17) and hence, the computation time (see Fig.
4). An increase of computation time by one iterative step is due to the increase of
calculations volume of intermediate concentration values with number of collo-
cation points in the section.

Figure 5 shows �2(
) versus 
 dependence calculated by using Eq. (19).
The calculations were made for the accuracy of �1(�) � 10�10, and the values ob-

Figure 4. Dependence of calculation time (t) for single iterative step on number of col-
location points per section of three-sectional cascade (
).

Figure 5. Dependence of degree of closeness to accurate solution on number of colloca-
tion points per cascade section (
).
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tained with 20 collocation points per section are taken as CiW*. For 16–20 collo-
cation points per section, �(�) �10�10 and its relative change appears to be ~1%,
which indicates that approximation to the solution with 
 � 20 is sufficiently
good.

From the known value of required accuracy, one can determine the optimal
number of collocation points and iterations and the total time for computer calcu-
lation of the problem through analysis of dependencies obtained (see Fig. 5).

The use of cascade calculations, which require the specification of initial ap-
proximations for the desired quantities, the number of iterations will also depend
on the deviation of the initial approximations from the values corresponding to ex-
act solution. This property of the computational process can be called the “sensi-
tivity” of computation technique to the choice of the initial approximations. The
orthogonal-collocation method developed for cascade calculation is not sensitive
to the choice of the initial approximations (see Fig. 6). This is confirmed by the
result of calculations carried out by using initial concentration of all components,
which is equal to 0, 1, and to the concentration in the natural isotope mixture. The
number of iterations appears to be essentially the same in each case. In the method
described above, the concentrations of components in the feed flux are the most
convenient to choose as an initial approximation. For comparison, the analogous
dependence for the calculation method based on integration of Eqs. (7)–(8) with
subsequent iterative refinement of the concentrations CiP and CiW is shown in Fig.
6 (25). As seen, when the relative deviation of the initial approximations from the
solution approaches one, the number of iterations tends to infinity, and it is im-
possible to obtain the solution. In such methods, the choice of initial approxima-

Figure 6. Influence of deviation of initial approximation of target-component (14N17O)
concentration Cb

2W from accurate solution C2W* on number of iterations for various meth-
ods: 1) orthogonal collocation, �1(�), �2(
) 
 10�8; 2) numerical integration of set of
equations reported (25).
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tions is especially important for components with a small concentration in the ini-
tial mixture, the deviation for which may be considerable, and hence, the conver-
gence of the iterative process may be difficult.

By solving physical problems such as cascade calculation, the same result
may be obtained using different calculation methods based on the use of a func-
tion different from that described by Eq. (18). The number of iterations required
for cascade calculation with a specified accuracy characterizes the efficiency of
the method (in particular, the convergence of the iterative process). Nevertheless,
this parameter is unsuitable for the comparison of methods differing by the func-
tion under calculation, even with the same structure of equations describing the
component transfer. Therefore, it seems more reasonable to compare different cal-
culation methods in terms of the time required for cascade calculations with a
specified accuracy (see Fig. 7). The orthogonal-collocation method permits ap-
proximately 5-fold reduction in the calculation time of the squared-off cascade
compared with other existing methods.

Calculation of Cascade of Specified Configuration 
by Matrix Method

It is advisable to use the system of Eqs. (1)–(4) for the stage-by-stage cal-
culation of a cascade. Application of the matrix method suggests to be more con-
venient to use the following balance equations for the mixture component fluxes,

Figure 7. Dependence of calculation time for squared-off cascade (t) on accuracy: 1) or-
thogonal collocation method; 2) solution of overall and component-by-component balance
at each stage; 3) numerical integration of set of transfer equations.
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LCi, at the entrance of each stage (see Fig. 1) instead of Eqs. (1)–(4):

L1Ci(1) � (1 � �2)L2Ci
� (2) � [W � (1 � �1)L1]CiW � 0,

i � 1, 2, . . . , m

LSCi(S) � �S�1LS�1Ci
�(S � 1) 

� (1 � �S�1)LS�1Ci(S � 1) � �SƒFCiF � O, (20)

S � 2, 3, . . . , N � 1; i � 1, 2, . . . , m

LNCi(N ) � �N�1Ci
�(N � 1) � [P � �NLN]CiP � 0,

i � 1, 2, . . . , m

where

�Sƒ � �0, S � ƒ,

1, S � ƒ, i � 1, 2, . . . , m; S � 1, 2, . . . , N

To make the solution of the above system more stable, it seems reasonable
to substitute the equation for the k-th component, having the maximum concen-
tration in the initial mixture, by the following connecting equation:

1 � ∑
m

i�1
Ci (S ) � 0, S � 1, 2, . . . , N. (21)

Concentrations of the i-th components Ci
�(S), Ci

�(S), and Ci(S) in the fluxes
�SLS, (1 � �S)LS, LS, respectively, are bound by the following relationships:

��
i,S � Ci

�(S) � Ci(S ) � ƒi(C1(S), . . . , Cm(S), �S),

��
i,S � Ci(S ) � Ci

�(S ) � �
1 �

�S

�S
� ��

i,S, (22)

i � 1, 2, . . . , m; S � 1, 2, . . . , N

where ƒi (Cl, . . . , Cm, �) is the enrichment function of the i-th component. A more
detailed form of this function is determined by the separation method and the
mode of cascade operation.

To close system (20) comprising m � N equations, it is necessary to elimi-
nate coefficients �S(S � 1, 2, . . . , N ) from unknowns. For this one needs to spec-
ify the value of one of these coefficients (for example, �1) and determine the other
�S (under conditions of known distribution of LS) by using the following standard
relations:

�S�1 � �
1 � �

L
W
S�1
� � �

�

LS

S

�

L

1

S
�, S � 1, 2, . . . , ƒ

1 � �
LS

P
�1
� � �

�

LS

S

�

L

1

S
�, S � ƒ, ƒ � 1, . . . , N

(23)
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Note that system (20) may be generalized to the case of arbitrary number of
feed, product, and waste fluxes. Solution of nonlinear algebraic equations with ac-
counting for the concrete form of the enrichment function (21) can be realized by
all numerical methods applicable for solution of systems of nonlinear equations.
Taking into account the convergence rate of the iterative process and the solution
stability, a satisfactory result can be provided by a damped form of the Newton’s
method (47).

After signifying the unknowns Ci (S) in the order of increasing subscript
numbers i and the stage number S as a vector x�� with dimension of m � N, the it-
erative process for this method will be written as follows:

x��
�1 � x��
 � �x��
,

F�(x��
)�x��
 � ��F(x��
),
(24)

where F(x��
) are the values of the left-hand sides in (20)–(21) at a point with
known coordinates x��
; F�(x��
) is the Jacoby matrix for the system at that point; 
�x��k � x��k�1 � x��k and � is the damping coefficient. Because each S-th equation
of system (20)–(21) contains unknown values of concentrations in the fluxes en-
tering only (S � 1)-th, S-th and (S � 1)-th stages, the Jacoby matrix belongs to
the type of strip matrices with strip width of (3 � m). Hence, during iterations
(24) the strip structure of the matrix persists (48). As it follows from the practi-
cal calculations, this matrix is suitable to represent in the form of the square sub-
matrices of the dimension m � m. All elements of the Jacoby matrix, which do
not belong to these submatrices, equal zero. The schematic of this matrix is
shown in Fig. 8.

Determination of the (
 � 1)-th approximation to x��
�1 in the iterative pro-
cess (24) is reduced to the solution of nonlinear algebraic equations of A�x��
 � b��

type with unknowns �x��
. Determination of �x��
 can be preferably carried out
through the use of the Gauss elimination algorithm formulated in such a way that
the elements of the Jacobian, which do not appear in the strip of this width, are dis-
regarded in the calculations. The last circumstance reduces the run time substan-

Figure 8. Jacoby matrix for Eqs. (20) and (21) (Aij are submatrices).
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tially. The calculation scheme for the squared-off cascade by the method proposed
includes:

1. specification of the initial data: m, N, ƒ, F, P, Ci
F, � i

�
,S, LS, �1;

2. definition of the cut at stages: �S(S � 2, . . . , N );
3. solution of the system Eqs. (20)–(21).

This method provides a better convergence than the stepwise method. It
does not require the initial data close to unknowns, and often reduces the run time.
At the same time, it requires a certain increase in the computer memory. For ex-
ample, calculation of the cascade of 50 stages with two feed fluxes of different
composition and three waste fluxes requires solution of the system (20)–(21) with
250 equations that needs several iterations. The concentrations in one of the feed
fluxes have been chosen as an initial approximation for the unknown concentra-
tions at each stage. The calculations of the squared-off cascades for separation of
a wide-range of multicomponent mixtures have shown that the use of the above
initial approximations permits determination of unknown concentrations with ac-
curacy of �0.1% in 10 or less iterations. The method considered is particularly ef-
fective for the calculation of cascades with a relatively high enrichment at stages.

DESIGN CALCULATIONS OF CASCADES FOR SEPARATION
OF MULTICOMPONENT MIXTURES

Q-Cascade and Its Properties

Calculation of a cascade with defined product flux and given limitations on
concentrations in the product and waste fluxes for the target isotope implies de-
termination of the following parameters: 1) number and length of stages; 2) flows
entering each stage of section; 3) waste flux W; and 4) feed flux F. The values of
these parameters have to be, as a rule, optimized by certain criteria. At the same
time, the effective numerical methods permitting calculation of the flux profile for
a given cascade and concentrations of the multicomponent isotope mixture com-
ponents at cascade ends do not exist. For this reason, it seems reasonable to use
the uninterrupted-profile cascade as the preliminary model. The theory allows for
determination of lengths of the stripping and enrichment sections of this cascade,
the flow distribution, L(S), and component concentrations along the cascade
length, if the product flux and concentration of the desirable isotope in the prod-
uct and waste fluxes are known. The following procedure reduces the cascade cal-
culation to approximation of the model cascade by the squared-off cascade fol-
lowed by its optimization.

The most common method of calculation of model cascades is based on the
application of relationships proposed by Kucherov and Minenko (2) by means of
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substitution of variables in Eqs. (7) and (8). The essence of this conversion be-
comes evident from the following example, which describes the enrichment sec-
tion of the simple cascade. Concentrations Ci(S) are substituted by functions �i(S)
and system of Eq. (7) is reduced to the single Volterra equation, which can be writ-
ten for one of these functions as follows:

�i(S) � ∑
m

j�1
�
2
L
P
(
C
S)

jP
� �S

0
�i(t) exp[	ij(S � t)]dt � ∑

m

j�1
�
C
L

i

(
F

S
L
)
F

� exp(	ijS), (25)

and must be complemented with (m � 1) relations having the following simple
form:

�j(S) � �i(S)exp(	ijS), (26)

where LF and CiF are the flux and the concentrations in the cascade feedflow at S
� 0. After substitution S � SP � 1, Eqs. (25) and (26) will be written as follows:

�i(l) � ∑
m

j�1
�
P
L
C
(l

i

)
P

� �l

0
�i(t)exp[	ij(t � l)]dt � ∑

m

j�1
�
Cj

L
P

(
L
l
(
)
0)

� exp(�	jil), (27)

�j(l) � �i(l)exp(	jil), (28)

where L(0) is the flow corresponding to the conditions P � 0, i.e., at the product
outlet of the cascade.

Functions �i(l) are connected with concentrations and the flow within the
cascade by the following relation:

Ci(l)L(l) � . (29)

After substitutions

Ci(l)L(l ) � Gi(l ), (30)

∑
m

j�1
Gj(l ) � L(l ), (31)

one obtains

Ci(l) � . (32)

Note that relation (27) can be easily generalized for the squared-off cascade as
well as for the case of several feed and waste fluxes.

For a given L(S), Eq. (27) has a single solution that can be obtained, for ex-
ample, by using consecutive approximations permitting concentrations to be
found of the mixture components by formulae (29) and (32).

Gi(l)�

∑
m

j�1
Gj(l)

CiPL(0) � 2PCiP �l0 �i(t)dt
���
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In practice it seems more attractive to use Eqs. (29)–(31) for determina-
tion of distribution L(l) in the cascade that allows one to solve the problem of
searching the desired enrichment for the target component. One of the charac-
teristic functions �n(l) defines unconditionally distributions L(l) and C(l) along
the length of cascade and the rest (m � 1) of the functions are defined by rela-
tion (28). If the characteristic function enables us to calculate the integral in for-
mula (29), one can obtain the analytical ratio for the flow distribution L(l) and
concentrations Ci(l).

Presentation of the characteristic function in the exponential form (13) per-
mits a simple and suitable mathematical model to be obtained, which can be used
to solve many separation problems:

�i(l ) � exp(Qil ), (33)

where Qi are the constants, which according to Eq. (28) have to be connected by
the following relation:

Qi � Qj � 	ij. (34)

Therefore, only a single Qi value can be selected as an arbitrary one. The model
cascades satisfying relation (33) are called Q cascades.

To minimize the total flow in the cascade, it is natural to introduce the fol-
lowing condition:

L(0) � 0. (35)

Substituting Eq. (33) for Eqs. (29), (30), and (31) and accounting for Eq.
(35), one obtains:

Gi(l) � �
2P

Q
C

i

iP
� [1 � exp(�Qjl )]. (36)

L(l) � 2P ∑
m

j�1
�
C
Q

jP

j
� [1 � exp(�Qjl )]. (37)

Equations (36) and (37) represent the distributions of component flow Gi and the
mixture flow L in the enrichment section of the Q cascade.

The analogous equations can be written for the stripping section of the Q
cascade:

Gi(l ) � �
2W

Q
C

i

iW
� [exp(Qjl ) � 1], (38)

L(l ) � 2W ∑
m

j�1
�
C
Q

jW

j
� [exp(Qjl ) � 1], (39)

where l � Sw � S.
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Through the use of relations (36)–(39) and (32) one can obtain concentra-
tions in the product CiP and in the waste CiW fluxes from concentrations in the feed
point Cif:

CiP ��
1 � e

Q
xp

iC
(�

iƒ

QiSP)
� / ∑

m

j�1
�
1 � e

Q
xp

jC
(�

iƒ

QjSP)
�, (40)

CiW ��
exp(Q

Q

i

i

S
C

W

iƒ

) � 1
�/ ∑

m

j�1
�
exp(Q

Q

j

j

S
C

W

iƒ

) � 1
�. (41)

It is necessary to emphasize that in general case concentrations Ciƒ in the
feed point of the cascade does not equal the concentrations in the feed stream CiF.
Using the material balance Eqs. (3) and (4), one can expel Ciƒ from Eqs. (40) and
(41) and express CiP and CiW through CiF values as follows:

CiP � CiF / ∑
m

j�1
CjF (42)

CiW � CiF / ∑
m

j�1
CjF (43)

By using formulae (37) and (39) and the evident relation ∑m
j�1 Cj � 1, it is easy to

obtain the following ratios:

�
W
P

� � ∑
m

j�1
CjF, (44)

�
F
P

� � ∑
m

j�1
CjF. (45)

The above formulae demonstrate that the Q cascades allow concentrating
isotopes of definite masses under conditions of an appropriate choice of Qi value.
Indeed, we assume, for the sake of definition that for the i-th isotope parameter 
Qi � 0, and the length of cascade is sufficiently high, i.e., both SP and SW are � 1.
Estimation of the separation effect shows that the behavior of isotopes in the cas-
cade is different depending on the Qn sign. For example, if Qi � 0 one can easily
obtain from Eq. (42) the following estimation relations taking into account that the
denominators standing in expressions for concentrations CiF and CjF are identical:

�
C
C

i

j

P

P
� � �

C
C

i

j

E

F
�. (46)

If Qi � 0, from expression (31) it follows that:

�
C
C

i

j

P

P
� � �

C
C

i

j

F

F
�. (47)

For the stripping section of cascade the same estimations are made when Qi � 0.

exp(QjSW) � 1
���
exp(QjSW) � exp(�QjSP)

1 � exp(�QjSP)
���
exp(QjSW) � exp(�QjSP)

exp(�QjSP) � 1
���
exp(�QjSP) � exp(QjSW)

exp(�QiSP) � 1
���
exp(�QiSP) � exp(QiSW)

1 � exp(�QjSW)
���
exp(�QjSP) � exp(QjSW)

1 � exp(QiSW)
���
exp(�QiSP) � exp(QiSW)
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For the majority of separation methods, the coefficients of reciprocal en-
richment are proportional to the mass difference of isotopes to be separated.
Hence, if one needs some intermediate isotope with number “n” to be obtained in
the product flow, Qn value should be expressed as follows:

Qn � k	n,n�1 � k	0 (Mn�1 � Mn), (48)

where k is the arbitrary constant lying in the range 0 � k � 1; 	0 is the enrichment
coefficient for the pair of isotopes with mass difference of one; Mn is the molecu-
lar mass of the n-th component of the mixture.

According to expressions (46) and (47) concentrations of isotopes with
numbers j � n will be increasing in the course of separation in the same manner
as concentration of the n-th isotope whereas concentrations of all isotopes with
numbers j � n will be sharply decreasing. Hence, Q cascades permit separation of
all isotopes of a given element into two groups.

As directly follows from the results obtained, concentration of an interme-
diate isotope in the product flow cannot be unlimitedly increased in a single Q cas-
cade. This conclusion evidently follows from the condition that the sum of all
component concentrations must not exceed one.

The length of the stripping section of Q cascade depends upon the maximum
concentration of an intermediate isotope in the product flow (16). The formula de-
scribing the concentration ratio of arbitrary i-th and n-th components in the prod-
uct flow of Q cascade can be written as follows:

�
C
C

n

iP

W
� ��

e
e
x
x
p
p
(
(
Q
Q

n

iS
S

W

W

)
)

�

�

1
1

�� ��
C
C

n

iF

F
� (49)

If n is the number of the target component and the mixture components are enu-
merated in the order of growth of their masses, then the Qi values are chosen so
that Qi � 0 for n � i and Qi � 0 for all i � n. In this case for cascades with an
enrichment section of sufficient length (i.e., for any i in compliance with for-
mula (49) exp(| Qi | SP) � 1), one can approach a limited value of the target iso-
tope concentration Cmax\nP for a given number of stages in the stripping sec-
tion, SW:

CnP
max � , (50)

where

�i ��
1
1

�

�

e
e
x
x
p
p
(
(
�

�

Q
Q

n

iS
S
W

P

)
)

�. (51)

CnF
�

∑
m

j�1
�iCiF

exp(QnSW) � exp(�QnSP)
���
exp(QiSW) � exp(�QiSP)
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In this case, the number of stages SW and the concentration of desirable isotope in
the waste flow CnW are connected by the following relation:

CnW � . (52)

In the limited case when SW → � formula (50) transforms to (10) and at SW → 0
we obtained a simpler expression for CnP

max:

CnP
max � (53)

under conditions that Qi/Qn � 1 (i � 1, 2, . . . , n). Hence, the maximum possi-
ble CnP

max value in a cascade with stripping section is defined by the following re-
lation:

� CnP
max � . (54)

In the case when the desirable component is enriched in the opposite part of the
cascade (in the waste flow W) together with other components having numbers i
� n � 1, . . . , m, relation (54) must be rewritten as follows:

� CnW
max � . (55)

If concentration of the desirable component CnP is determined from Eqs. (50),
(51), and (52), one can obtain CnW

max value corresponding to the minimum length of
the stripping section, (SW)min. Because we have assumed that exp(| Qn | SP) � 1,
hence, when CnW → CnW

max, the total flow in the cascade must unlimitedly increase.
The desired CnP value can be obtained for arbitrary SW � (SW)min values. Besides,
it is clear that along with the increase of SW the SP value will be decreasing. When
SW → � (i.e., when CnW → 0) the total flow will also increase unlimitedly. Con-
sequently, the optimal SW (or CnW) value corresponding to the minimum of ∑L
will be in the interval between (SW)min and SW → �. Existence of the optimal
length for the stripping section in cascades separating multicomponent mixtures
differ them from those used to separate binary isotope mixtures. In the last case,
the minimum of ∑L always corresponds to SW → � without any limitation for the
choice of utmost concentration for desired isotope. The utmost concentrations for
the intermediate mixture components at the ends of Q cascade (defined by formu-

CnF
�

∑
m

i�n

CiF

CnF
��

∑
m

i�n

�
Q
Q

n

i
� CiF

CnF
�

∑
n

i�1
CiF

CnF
��

∑
n

i�1
�
Q
Q

n

i
� CiF

CnF
��

∑
n

i�1
�
Q
Q

n

i
� CiF

CnF exp(�QnSW)
����

∑
n

i�1
CiF exp(�QnSW) � ∑

m

i�n�1
CiF
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lae (50)–(52)) essentially depend on their initial abundance in the isotope mixture.
Thus, for the tungsten isotope mixture of the natural abundance, shown in Table
3, the utmost concentrations for W-183 (i � 3) are C3P

max � 35.11% and C3W
max �

19.43%, and those for W-185 (i � 4): C4P
max � 42.95% and C4W

max � 51.75%, re-
spectively.

The following routs can be used to obtain the target components at higher
than the utmost concentrations at the ends of the simple cascade:

1. to switch an additional product flow inside the cascade in the point of
localization (concentration) of the target component. The analysis
shows that in this case the concentration of purpose component does not
exceed too much that predicted by relation (10), and

2. to use two consecutively connected Q cascades as shown in Fig. 9.

The total flow is an important integral characteristics of the separating cas-
cade. By multiplying Eqs. (37) and (38) with dl and then integrating both expres-
sions along the stripping and enriching parts of the cascade one can obtain the fol-

Table 3. Natural Concentration of Tungsten Isotopes

Component
Number, i 1 2 3 4 5

Isotope W-180 W-182 W-183 W-185 W-186
CiF, % 0.13 26.30 14.30 30.67 28.60

Figure 9. Schematic diagram of extraction for intermediate target component by double
cascade.
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lowing formula for the total flow:

∑L � 2 ∑
m

i�1
�

��
PCiPSP �

Qi

WCiWSW
��

(53)

The following sequence of operations can be recommended to calculate a Q
cascade for the definite values of CnP, CnW, and P if n is the target component
number; and all 	ij and CiF values are known:

1) to set up Qn values (or k value, to be exact, as follows from Eq. (48))
for the target component;

2) to define the rest of Qi in accordance with relation (34);
3) to solve system Eqs. (42) and (43) for i � n to find SP and SW;
4) to find the rest of CiP(i � n) and CiW(i � n) in line with Eqs. (42) and

(43), and the values of product and feed flows by using Eqs. (44) and
(45), and

5) to find the distribution of flows in the stripping and enriching sections
of the cascade in conformity with Eqs. (37) and (39) and to calculate the
total (sum) flow in the cascade in accordance with relation (53).

Matched Abundance Ratio Cascade (MARC)

The need to set up parameter Qn requires determination of k value in ex-
pression (48). The results of calculations of cascades under consideration show
that the sum ∑L should be taken with coefficient 0.5 to minimize the total flow.
The analysis of relations (27)–(29) demonstrates that the case Qn � (1/2)
	n,n�l(l�1, . . . , m�n) corresponds to the cascade, in which the abundance ratio be-
tween n- and (n � 1)-th components in two flows, which are mixed at the inlet of
each stage, is the same. The theory of such cascade was developed in detail for m
� 3 in the classic article by de la Garza et al. (1) where it was named the matched
abundance ratio cascade (MARC) or briefly as matched R cascade. At l � 1, we
have the most efficient MARC, which allows separation in the product flow of the
target (n-th) component along with components number 1, 2, . . . , n � 1, and sup-
presses in this flow the components with numbers n � 1, n � 2, . . . , m. If

Qn � �
1
2

� 	0 (Mn�1 � Mn), (54)

it follows from relation (34) that for arbitrary i

Qi � 	0 	�Mn �

2
Mn�1
� � Mi
, (55)

PCiP[exp(�QiSP � 1] � WCiW[exp(QiSW � 1]
�����

Qi
2
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and, in particular,

Qn�1 � �Qn. (56)

Rearranging Qi in the form of (55) and taking into account the balance Eqs.
(3) and (4) one can obtain from Eqs. (42) and (43) the following relations:

RP
n,n�1 � �

C
C

n�

nP

1,P
�/�

C
C

n�

nF

1,F
� � exp(QnSP), (57)

RW
n,n�1 � �

C
C

n�

nW

1,W
�/�

C
C

n�

nF

1,F
� � exp(�QnSW). (58)

Equations (57) and (58) clearly show that in the cascade under consideration the
abundance ratios Rn,n�1 � Cn/Cn�1 in the inlets of separating stage are identi-
cal, i.e., the conditions of nonmixing of relative concentrations Rn,n�1 are ful-
filled.

As follows from relations (57) and (58), setting up the relative concentra-
tions Rn,n�1 in the product and waste flows allows one to determine invariantly the
numbers of stages SP and SW and hence, by using formulae (42)–(45), (37), and
(39) one can entirely calculate the cascade.

Simultaneously with definition of Qi in the form of Eq. (54), expression (53)
for the total flow is essentially simplified. In fact, from Eqs. (40) and (41) in line
with conditions (56) we have

PCiP [exp(�QiSP) � 1] � � PCn�1,P �
Cn

C

�

if

1,ƒ
���

Q
Q

n

i
� [exp(QnSP) � 1], (59)

WCiW [exp(QiSW)P � 1] � �WCn�1,W �
Cn

C

�

if

1,ƒ
���

Q
Q

n

i
� [exp(�QnSW) � 1] (60)

By summarizing Eqs. (59) and (60) and accounting for Eqs. (4), (5), (57),
and (58), one obtains the following equality, which is valid for arbitrary i:

PCiP [exp(�QiSP) � 1] � WCiW [exp(QiSW) � 1] � 0 (61)

Besides, it directly follows from relations (57) and (58) that

�
PCiP �

Q
W

i

CiW SW
�� (62)

Inserting relations (61) and (62) in (53) and substituting Qn and Qi in accordance
with (54) and (55) one obtains

∑L � �
	
2
2
0
� ∑

m

j (63)

PCjP ln RP
n,n�1 � WCjP ln RW

n,n�1 � FCiF ln RF
n,n�1

������

(Mn�1 � Mn) 	�Mn�1

2
� Mn
� � Mj


PCiP ln RP
n,n�1 � WCiW ln RW

n,n�1 � FCiF ln RF
n,n�1

������
QiQn
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Equation (61) along with Eqs. (57), (58), and (3), (4) can be easily transformed
into the following form

PCiP(RP
n,n�1)��l � WCiW(RW

n,n�1)��i � FCiF (RF
n,n�1)��l � 0, (64)

where �i � Qi/Qn.
Relation (64) connecting the flows and concentrations in MARC is called

the H balance (1). One needs to take into account that it includes (m � 2) inde-
pendent relations therefore, when i � n and i � n � 1, it transforms into the bal-
ance equation for n and n � 1 components. Equation (64) together with m balance
Eq. (4) and evident relations Σm

j�1 CjP � 1 and Σm
j�1 CjW � 1 compose the system

of m � 2 � m � 2 � 2m independent algebraic equations possessing 
(2m � 3) unknown parameters (2m outgoing concentrations and P, W, and F
flows). Hence, the design calculations of MARC suggest the definition of at least 
(2m � 3) � 2m � 3 parameters (for example, CnP, CnW, and P). The rest of the
parameters will be defined from the solution of the above mentioned system of al-
gebraic equations.

In the separation practice, one can meet the variants of cascade calculations
of specified number of separating stages, i.e., the cascades with known total flow.
In this case the system of algebraic equations must be complemented by Eq. (63),
which suffices to determine only two parameters (for example, CnP and P) for its
solution.

Note that the considered Q cascade for separation of binary mixture is re-
duced to the ideal cascade without mixing of concentrations at entrances of the
stages. This directly follows from formulae (57) and (58). It is easy to show that
in this case, expression (63) for the total flow also converts into the well-known
expression for the binary cascade. It is important to emphasize that as it has been
proposed by Levin (18), extraction of the intermediate components can be carried
out by means of so-called M* cascades using somewhat other considerations,
which lead to the same results.

Calculation of MARC with Additional Product Flows

The problem of calculation of multicomponent cascades (used for separa-
tion of multicomponent mixtures) with additional product flows is connected with
the situation when the concentration of intermediate components achieves maxi-
mum inside the cascade. Hence, their concentrations in an additional product flow
can be higher than in the flow at the end of cascade. The approach described at the
end of the previous paragraph can be used to calculate MARC with additional
product flows (see Fig. 10). Taking into account the condition used above on non-
mixing of relative concentrations Rn,n�1 � Cn/Cn�1 we can write equations for the
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total and single component balances connected by external flows and component
concentrations in these flows (so-called productivity equations (1,17)):

∑
M

l�1

Pl � W � F � 0, (65)

∑
M

l�1

PlCjPl � WCjW � FCjF � 0. (66)

where j � 1, 2, . . . , m
The H balance equations will be the same as in the previous paragraph

∑
M

l�1

PlCjPl (RPl
n,n�1)��i � WCiW(RW

n,n�1)��i � FClF(RF
n,n�1)��i � 0, (67)

where j � 1, 2, . . . , m; i � n, n � 1.
Considering flow L as uninterrupted along the cascade length and following

Borisevich et al. (17), one can write the following relation for the section in
MARC starting from the tail product flow until the entering point of additional
product flow Pk:

CiPk � CnPk , (68)

∑
M�1

l�1

PlCiPl[1 � (RPl
n,n�1/RPk

n,n�1)��i]



∑
M

l�1

PlClPl[1 � (RPl
n,n�1/RPk

n,n�1)�1]

Figure 10. Schematic diagram of m-component MARC having one feed, one waste, and
M withdrawal points.
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where i � 1, 2, . . . , m; i � n, n � 1; k � 2, 3, . . . , M, and RPl
n,n�1 � CnPl/C(n�1)Pl

and CiPl are the i-th component concentration in the product flow Pl.
If necessary, one can use expression for the total flow in the cascade, which

is written as follows:

∑L � 2 ∑
m

j�1
(69)

Equations (64)–(68) compose the system for calculation of MARC with
several product flows. In the simplest case when M � 2, these equations take the
following form:

P1 � P2 � W � F � 0, (70)

P1CjP1 � P2CjP2
� WCjW � FCjF � 0, (71)

PlCiPl
(RPl

n,n�1)��i � P2CiP2 (RP2
n,n�1)��i

� WCiW(RW
n,n�1)��i � FCiF(RF

n,n�1)��i � 0
(72)

�
C
C

i

i

P

P

2

1
� � �

C
C

n

n

P

P

2

1
� �

�
1

i
� (RP1

n,n�1)1��i, (73)

where i � 1, 2, . . . , m; i � n, n � 1.
In this case, if the total flow is not defined we have (3m � 1) independent

equations comprising (3m � 3) unknown parameters: CiP1, CiP2, CiW, P2/P1,
W/P1, F/P1 (concentrations CiF are supposed to be defined). Hence, to solve this
system we have to select (3m � 3) � (3m � 1) � 4 parameters (for example,
P2/P1, CnP1, CnP2, CnW). If in addition, the total flow is defined we have 3m equa-
tions including only three parameters. The system of equations can be solved by
one of the well-known calculation methods such as, e.g., the Newton method.

The results of calculations for MARC with an additional product flow ex-
emplify separation of five-components isotope mixture of tungsten of natural
abundance. The intermediate isotope, W-183 (n � 3, C3F � 0.143), was selected
as the target component. The flow ratio P2/P1 (which is varied from 0 to 1) was
chosen as the desired parameter to calculate MARC with an additional product
flow to achieve the concentrations: C3P1 � 32.0%; C2P2 � 43.0%, and C3W �
1.2%. The results of these calculations are presented in Table 4.

The results of calculations for MARC with a given total flow and the same
values of concentrations are presented in Table 5.

The results of calculations demonstrate the possibility of obtaining in the ad-
ditional product flow concentration of the target component higher than in the
flow at the end of the cascade. The value of additional product flow depends on
the concentration of the target component in it as well as on the composition of
initial mixture to be separated and on concentration of the target component in the

(RP1
n,n�1)�i � (RP2

n,n�1)�i

���
RP1

n,n�1 � RP2
n,n�1

∑
M

l�1
PlCjPl ln RPl

n,n�1 � WCjW ln RW
n,n�1 � FCjF ln RF

n,n�1

������
QiQn
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main product flow P1. In the above example, P1 has reached the value of ~20% of
the main product flow at a relative increase of the target component concentration
in this flow (compared with C3P1) �30%. The analysis of the results obtained has
shown that introduction of additional product flow leads to an increase of both the
total flow and the number of stages. It is important to note that the value of P2/P1

is limited from above. The existence of the utmost P2/P1 value can be explained
as follows: this ratio increases until the moment when the given concentration of
the target component cannot be reached in any section of the cascade.

Design Calculations for Squared-Off Cascades Based on
Continuous Profile Cascades

Calculations of the squared-off cascade (SOC) for the fixed extraction de-
gree (product flow) and given restrictions on the range of concentrations of the tar-
get isotope in the product and waste flows consist of determination of the follow-
ing parameters: the number, the length, and the values of intermediate flows in
sections, and the ratio of waste to product flows W/P. In this case, the values of
the parameters must, as a rule, correspond to the optimal ones meeting some def-
inite criteria.

The profile of cascade under design and the concentrations of components

Table 4. Results of Calculation for MARC with Additional Product Flow and Given Concentrations
C3P1 � 32.0%, C2P2 � 43.0%, and C3W � 1.2%

P2/P1 0.043 0.060 0.080 0.100 0.120 0.160 0.200 0.204 0.208
W/P1 5.764 6.008 6.368 6.766 7.251 8.590 12.33 13.65 22.88
	0SP1

2.331 1.732 1.551 1.439 1.358 1.246 1.168 1.162 1.155
	0(SP1

� SP2
) 5.912 5.917 5.925 5.933 5.941 5.955 5.967 5.971 5.973

	0SW 1.499 1.437 1.531 1.575 1.619 1.707 1.759 1.805 1.814
(	0

2∑L)/P1 17.17 17.34 18.35 19.11 20.22 23.12 29.70 31.76 45.25

Here SP1
is the total number of stages in the enriching section of MARC; SP2

is the number of stages
between the feed point and the point of the additional product flow P2; and Sw is the number of stages
in the stripping section.

Table 5. Calculated Results for MARC with 	0
2L/P1 � 20, C3P1 �

32.0%, C2P2 � 43.0%, and C3W � 1.2%

	0SP1
	0(SP1

� SP2
) 	0SW P2/P1

7.188 1.371 5.939 0.117
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of a multicomponent isotope mixture at its ends cannot be determined analyti-
cally. Hence, the methods used to directly integrate the mass-transfer equations
for calculation of cascades (to obtain a fixed enrichment of intermediate compo-
nent) are not always effective and some of them are not applicable at all.

It is convenient to use the above-described Q cascade as a model cascade
of continuous profile to solve the calculation problem for intermediate compo-
nents. The principle possibility of approximation of a Q cascade by a squared-
off cascade has been demonstrated (13). One of possible criteria for optimal ap-
proximation along with technique for calculation of SOC has been proposed
(24). The problem of approximating a part of Q cascade operating in the range
of concentrations from Cib to Cil (i � 1, 2, . . . , m, where m is the number of
mixture components) by a section of constant width was also formulated by
Kolokol’tsov et al. (24). According to Kolokol’tsov et al. (24), one needs first to
find the values of flow L and number of stages S in the section providing the
minimum deviations of concentrations at the end of the square section to be cal-
culated. In this case, it is assumed that the concentrations at the beginning of
section and in the product flow of cascade CiP coincide with the relative con-
centrations of a Q cascade. The sum of relative deviations of component con-
centrations in the joint points of sections can be easily used as an approximation
criterion, �:

� �∑
m

i�m
��Cil

C
�

il

Ci
� �. (74)

The calculation of single sections can be done by direct integration of Eqs. (7) and
(8). For concentrations at the beginning of each section one can write:

Ci(0) � Cib; i � 1, 2, . . . , m � 1, (75)

Hence, the calculation of section is reduced to solution of Eqs. (7) and (8) with re-
spective initial conditions, i.e., it is reduced to the ordinary Cauchi problem. Since
the concentration values in each point of section with defined concentrations in
the product and the waste flows, CiP and CiW, respectively, depend on coordinate
S (starting from the beginning of section) and on the flow L the problem is reduced
to the search of S and L values that will minimize function (74). Figure 11 shows
distributions of relative deviations for concentrations (Cil � Ci)/Cil � (�Ci/Cil)
and functional (74) with respect to the relative flow 	0L/2P in a constant width
cascade approximating a Q cascade for the six-component isotope mixture of
krypton: Mi � 78, 80, 82, 83, 84, 86; CiF � 0.00354, 0.0227, 0.1156, 0.1155,
0.5690, 0.1737. As seen from Fig. 9, the relative deviations of concentrations are
not high and do not exceed 3% in the point corresponding to the minimum of func-
tional (74).
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A method for approximate calculation and optimization of SOC by using
some criterion was proposed (25). The method is based on the use of a target op-
timization function, which accounts for both the optimality criterion and the sum
of deviations of component concentrations at the joints of the product and waste
sections. For the total flow chosen as a criterion, the target function has the fol-
lowing form:

� � K1∑|Ciƒ(P) � Ciƒ(W) | � K2�
∑

L
L

Q

SOC
�, (76)

where Ciƒ(P), Ciƒ(W) (i � 1, 2, . . . , m) are the concentrations in the feed point de-
termined as the result of integration of system (7)–(8) along the lengths of the
product and waste parts in the direction from the ends of the cascade to its feed
point, and ΣLSOC, ΣLQ are the total flow of the SOC and the Q cascade, respec-
tively.

The target approximation of the cascade is obtained in the course of opti-
mization of cascade parameters, for which the value of � function is minimal. At
each optimization stage, system (7)–(8) is integrated with only the following
boundary conditions:

CiP � CQ
iP, CiW � CQ

iW i � 1, 2, . . . , m, (77)

where CQ
iP, CQ

iW are the concentrations at the ends of Q cascade to be approximated.
The first term of function (77) determines the accuracy of calculations of

SOC corresponding to the optimal Q cascade and having the same component

Figure 11. Dependence of relative deviation of concentrations and function of residuals
vs. relative flow 	0L/2P.
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concentrations at the ends. The second term characterizes the degree of SOC ap-
proximation to the optimal one and is inverse to the efficiency of the cascade pro-
file form.

The accuracy of calculation increases if the terms of function (76) are of the
same order of magnitude. The last condition is achieved through the use of nor-
malizing coefficients K1 and K2. Their ratio depends on 1) the number of compo-
nents; 2) the composition of initial mixture; 3) the concentration of target compo-
nent in the initial mixture; and 4) the degree of its enrichment. The dependencies
of mixture concentrations in the product and waste flows and the value of 1/�� for
isotopic mixtures of different composition were studied by Frolov et al. (25) to de-
termine the range of variation of K1/K2 ratio. It was found that for mixtures of dif-
ferent composition containing from three to six components the ratio K1/K2 varies
from 10 to 30.

Figure 12 shows the dependencies of concentrations of the target compo-
nent C2 in the three-component mixture determined in the product and waste
flows and the values of inverse efficiency of the cascade form on the K1/K2 ra-
tios. The calculations were performed for separation of the three-component
model mixture of isotopes with component concentrations in the feed stream:
C1F � 0.2, C2F � 0.3, and C3F � 0.5. The isotopes are enumerated in the order
of increasing masses. The second isotope is the target one. For the mixture un-
der study the values of the form efficiency and the concentration of the target
isotope in the product and waste flows are evidently close to the optimal ones
(in the given range of K1/K2 variations) for the SOC obtained as the result of ap-
proximation. For high K1/K2 values the second term in Eq. (76) can be ne-
glected, and the SOC resulting due to approximation is close to that computed

Figure 12. 1/� and concentration of target component intermediate of model three-com-
ponent mixture in product flow (CP) and waste flow (CW) of square cascade vs. K1/K2.
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according to criterion (74) with efficiency equal to ��1. For low K1/K2, the con-
dition for continuity of component concentrations at the feed point can be dis-
turbed. In this case to make the calculation more accurate one needs to solve the
following system of equations:

Ciƒ(P) � Ciƒ(W),

PCiP � WCiW � FCiF, i � 1, 2, . . . , m.
(78)

The concentrations of the target isotope in the product and waste flows obtained
from this solution can substantially differ from the above given values (see Fig.
10).

Thus the scheme for calculation of the optimal SOC based on the method
proposed is as follows: calculation and optimization of the Q cascade; simultane-
ous calculation and optimization of the SOC approximating this Q cascade; the re-
finement of concentrations of the target isotope in the product and waste of the
cascade obtained.

It is desirable to optimize the Q cascade and the SOC by a unified criterion.
The approach described can also be used to calculate optimal cascades, which
have several feed and product flows.

MARC with Arbitrary Enrichment at Each Stage

It is reasonable to assume that MARC (R cascade) can also be effectively
used for separation of isotopic and non-isotopic (gaseous) mixtures when the en-
richment effect at a separating stage is not small.

Let us examine a counter-flow symmetric MARC consisting of N stages,
which is intended for separation of an m-component mixture. The flux of the ini-
tial mixture, F, with component concentrations CjF( j � 1, 2, . . . , m) is fed into
the input of stage number ƒ. To calculate separation characteristics of R cascade
one needs to determine 1) the product (P) and the waste (W ) flows exiting the N-
th and the first stages, respectively; 2) the component concentrations in these
streams (CjP and CjW); 3) the distributions of the mixture flow (LS) along the cas-
cade length; 4) the concentrations of components Cj(S); and 5) the cut �S.

In the case under consideration, the concentration distribution along the
length of the cascade can be obtained by solving the system of Eq. (20). Here the
cut coefficients �(S), S � 2, 3, . . . , N � 1 must be chosen to fulfil the non-mix-
ing conditions:

R�
nk(S � 1) � Rnk(S ) � R�

nk(S � 1), (79)

where

Rnk � �
C
C

n

k(
(
S
S
)
)

�, R�
nk(S � 1) � �

C
Cn

�

k
�

(
(
S
S

�

�

1
1
)
)

�, R�
nk(S � 1) � �

C
C

k
�
n
�(

(
S
S

�

�

1
1
)
)

�,
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Cn(S), Cn
�(S), Cn

�(S) are the concentrations of the n-th component in the fluxes
entering and leaving the S-th stage, respectively, n and k are the arbitrary num-
bers of components of the mixture under separation (for the target components
n � k). In addition, for each separation method the concentrations Ci

�, Ci
� de-

pend on the composition of the mixture at the inlet into stage and on �i value at
this stage. The cut of the flux in the first stage is fixed arbitrary (20). The non-
mixing conditions for the relative concentrations of the n-th and k-th compo-
nents in the feed flow and in the flow at the inlet into the ƒ-th stage written as
follows:

RF
nk � Rnk(ƒ) (80)

are determined by a proper selection of the corresponding waste flow W.
The flows at the inlet of each cascade stage, LS, are calculated with the help

of the following material balance equations in an arbitrary cross-section of the
cascade (12,20):

W/(1 � �S), S � 1
�S�1LS�1/(1 � �S) � W/(1 � �S), S � 2, 3, . . . , ƒ (81)LS �
�S�1LS�1/(1 � �S) � P/(1 � �S), S � ƒ � 1, ƒ � 2, . . . , N � 1

�S�1LS�1, S � N

Equations (20), (79), and (80) along with (81) and the known functions Ci
� (C1, . . . ,

Cm, �), Ci
� (C1, . . . , Cm, �) can be solved for unknowns Ci(S), �s, W, S � 2, 3, . .

. , N � 1; i � 1, 2, . . . , m by using the modified damped Newton method (12). 
As it is known, the convergence of numerical methods in solution of nonlinear 
algebraic equations mainly depends on either the structure of equations or the form
in which they are written. The numerical experiments have shown (20) that the
Newton method is the most stable when Eqs. (79) and (80) are written in the fol-
lowing form:

1 � �
R
R

�
n

�
n

k

k(
(
S
S

�

�

1
1
)
)

� � 0, 1 � �
Rn

R

k

F
n

(
k

ƒ)
� � 0,

and the ratio W/F is the unknown.
The solution of system of Eqs. (20), (79), and (80) has been found in the an-

alytical form (21–23) for the case when the relative separation factors

�ik � �
R
R

i

i

k
�

k
�� � �

C
C

k
�
i
�

���
C
C

k
�

i
��; �ik

� � �
R
R

i

i

k
�

k
� � �

C
C

k
�
i
�

���
C
C

k

i
�; �ik

� � �
R
R

i

�ik

k
� � �

C
C

k

i
���

C
C

k
�

i
��

(where i � 1, . . . , m, and k denotes an arbitrary target component) do not depend
on either composition of the mixture or the cut, i.e., their values remain constant
along the cascade length.
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Let us introduce the following notations:

Gi � CiL, (82)

Gi
� � Ci

��L, (83)

Gl
� � Ci

�(l � �)L, (84)

�i � Gi
�/Gi

�, (85)

and the following evident relationships:

�ik
� � �

R
R

i

i

k
�

k
� � �

G
G

i
�

k
�

�

�

G
G

k

i
�, (86)

�ik
� � �

R
R

i

i

k
�
k

� � �
G
G

k

i�

�

G
G

k
�

i
��, (87)

�ik � �ik
���ik

� � �
R
R

i

i

k
�
k

�

� � �
G
G

i
�

k
�

�

�

G
G

k
�

i
��, (88)

L � ∑
m

j�1
Gj, �L � ∑

m

j�1
Gj

�, (1 � �)L � ∑
m

j�1
Gj

�, (89)

It is easy to obtain the following expressions connecting �i and �k values with rel-
ative separation factors:

�i � �
�

(
ik
�

�

(�

ik
�

ik
�

�

�

1)
1)

�, i � k (90)

�k � �
�

(

ik
�

�

(�
ik
�

ik
�

�

�

1)
1)

�. (91)

Thus, the separation factors are defined with respect to the k-th component, and �k

has the same value for an arbitrary i � k. As it follows from Eqs. (90) and (91)

�i � �ik�k. (92)

Taking into account the above-introduced notations, the balance equation for 
the component fluxes at the inlet of an arbitrary S-th stage has the following 
form:

Gi
�(S � 1) � Gi

�(S � 1) � Gi
�(S ) � Gi

�(S), i � 1, 2, . . . , m. (93)

If the relative separation factors do not change from stage to stage, the �i

and �k values will also be constant along the length of the cascade. Equations (93)
and (85) can then be written as follows:

Gi
�(S � 1) � (�i � 1)Gi

�(S ) � �iGi
�(S � 1) � 0. (94)
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Equation (94) intends a nonlinear second order finite-difference equation regard-
ing unknown functions G�/i (S). The boundary conditions for them are written as
follows:

Gi
�(0) � Gi

�(N � 1) � 0,

Gi
�(ƒ � 1) � Gi

�(ƒ � 1)��
�
1

i
� � 	1 � �

�
1

i
�
Gi

�(ƒ) � FCiF,

Gi
�(N ) � PCiP,

Gi
�(1) � WCiW�i, i � 1, 2, . . . , m.

(95)

Besides, the solutions of Eq. (94) must also coincide at S � ƒ. The stages with
numbers S � 1 and S � N are the end stages of the cascade. Hence, this makes it
possible to formally write: Gi

� (0) � Gi
�(N � 1) � 0.

The fundamental solution of Eq. (94) for the constant values of coefficients
�i and �k can be presented in the following form:

Gi
�(S) � Ai�1

S � Bi�
S
2, (96)

where Ai and Bi are the integration constants, and �1,2 are the roots of characteris-
tic equations

�2 � (�i � 1)� � �i � 0 (97)

having the following values

�1(�i) � �i, (98)

�2(�i) � 1. (99)

Using the boundary conditions (95) to determine constants Ai and Bi, one can ob-
tain:

for enriching section of cascade

Gi
�(S ) � PCiP �

�i

�

�
i

1
� (1 � �i

S�N�1), (100)

PCiP � FCiF �
1

1

�

�

�

�

i
�

i
�

N�

ƒ

1�, S � ƒ, . . . , N, (101)

for stripping section

Gi
�(S) � WCiW �

�i

�

�
i

1
� (�i

S � 1), (102)

WCiW � FCiF �
�

�

i
N
i
N

�

�

i

1

�

�ƒ

1
�, S � 1, . . . , ƒ � 1. (103)
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From Eqs. (100)–(103), one can easily obtain the following relations:

�
P
F

� � ∑
m

j�1
CjF �

1

1

�

�

�

�

j
�N

j
�

�

ƒ

1�, (104)

�
W
F

� � ∑
m

j�1
CjF �

�

�

i
N

j
N

�

�

1�

1

ƒ

�

�

1

1
�, (105)

CiP � CiF �
1

1

�

�

�

�

i
�N

i
�

�

ƒ

1�/∑
m

j�1
CiF �

1

1

�

�

�

�

j
�N

j
�

�

ƒ

1�, (106)

CiW � CiF �
�

�

i
N

i
N

�

�

1�

1

ƒ

�

�

1

1
� /∑

m

j�1
CiF, �

�

�

j
N

j
N

�

�

1�

1

ƒ

�

�

1

1
�. (107)

If CiF and �i values and the numbers of stages in the enriching and stripping sec-
tions are defined, one can calculate in conformity with formulae (104)–(107) the
values of the following parameters: P/F, W/F, CiP, and CiW. Then by using Eqs.
(100)–(103), the following expressions describing L(S), Ci(S), and �(S) distribu-
tions can be written:

L � ∑
m

j�1
Gj � ∑

m

j�1
Gj

� �
1 �

�j

�j
�, (108)

Ci � �
1 �

�i

�i
� �

G

L
i

�, (109)

� � ∑
m

j�1
�
G
L

i
�

�. (110)

Let us now consider MARC with non-mixing condition (79). It follows directly
from Eq. (79) (21,23) that

��
nk � ��

nk � ��
nk
, (111)

where �ik
� � �ik

�(i � n). Because relationship (91) is valid for arbitrary i including
i � n, by taking into account (101) and (92) one obtains:

�k � �
�

1

�
nk

� (112)

�i � �
�

�

�

ik

nk

�. (113)

The separation factor for each pair of mixture components can be expressed
for many isotope separation methods as a function of the difference between their
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molecular masses. For example, for a gas centrifuge (GC) technique the follow-
ing approximation can be used:

�ik � �0
(Mk�Mi), (114)

where �0 is the separation factor per unit of mass difference, Mk and Mi are the
masses of the target and the i-th components, respectively.

The coefficients �i and �k for GC-MARC can be expressed as follows:

�k � �0
(Mk�Mi)/2, (115)

�i � �0
(M*�Mi), (i � k), (116)

where

M* � �
Mn �

2

Mk
�, (117)

and n and k are the numbers of the target components. Equations (100)–(107) to-
gether with (115)–(117) permit calculation of the variables of interest for the
matched abundance ratio cascade.

As seen from Eqs. (106) and (107) when the number of stages in both en-
riching and stripping sections become unlimitedly large, the components with
molecular mass less than M* accumulate only in the cascade product flux. The
components with masses higher than M* concentrate only in the cascade waste
flux. This circumstance defines the choice of components with numbers n and k.
When k � n � 1, the cascade under consideration (similar to the case of small en-
richment at the stage) permits both to extract in the product flux the target (n-th)
component together with components with numbers 1, 2, . . . , n � 1 and “to de-
press” in this flow component with numbers n � 1, . . . , m.

In conclusion one needs to emphasize that the main advantage of using
MARC calculations to obtain an approximate cascade design is that the solution
is explicit, regardless of the number of components under consideration. These
calculations can be easily carried out either on a PC or even on a programmable
calculator.

TRANSIENT PROCESSES IN CASCADES SEPARATING
MULTICOMPONENT ISOTOPE MIXTURES

Mathematical Modeling of Mass Transfer

One of the important problems in the theory of multicomponent isotope sep-
aration is the study of distinctive features of transient processes existing in start-
ing operating period of cascades preceding establishment of a steady state. The
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importance of this problem deals with sufficiently high duration of transient pro-
cesses in the majority of separation methods. Hence, they may compose a big part
of exploitation time of operating installations.

The mathematical model for separation process in isotope approximation
(big number of separating stages, small value of enrichment coefficients, and their
independence on current concentrations of the mixture) may be presented in the
form of a set of differential equations in partial derivatives (26–32):

H(S)�
�C

�
i(
t
S
l
,t)

� � � �
�
�
S
� Ji(S,t), i � 1, . . . , m � 1,

∑
m

j�1
Cj � 1.

(117)

Here Ci (S,t) is the mole fraction of i-th component of the mixture at the cascade
stage number S; t is the time; H(S ) is the retardation (delay) of the substance flow
at the stage; and m is the number of the mixture components. For the majority of
separation methods one can presume with good accuracy that the delay H(S ) is
proportional to the flow L(S ) incoming S-th stage, i.e., H(S ) � hL(S ), where h is
the coefficient of proportionality having the dimension of time. The value of trans-
fer Ji(S,t) for the mixture components in the direction of the cascade stages with
growing numbers can be written as follows:

Ji(S,t) � �
L(

2
S)
� �Ci(S,t)∑

m

j�1
	ijCj (S,t) � �

�C
�
i(
S
S,t)
�� � TCi (S,t) (118)

where 	ij is the enrichment coefficient for the component pairs with numbers i and
j (the components are enumerated in the order of their growing masses).

For definiteness, let us consider a separation in cascade of a constant width,
i.e., a cascade with one feed flow and two withdrawals P1 � W and P2 � P at the
cascade ends. In this case, the transfer value for the mixture under separation is
defined as P2 for the cascade stages in the enriching section (related to the light-
est isotope) and that of the cascade stripping section is defined as (P2 � F).

The boundary conditions for the points where the flow L(S) and the transfer
T are interrupted are written in the following form at the ends of the cascade:

�
�

�

C
S

i
� � Ci∑

m

j�1
	ijCj, (119)

In the internal points of the cascade where the flow L(S) also has the break off

Ji
� � Ji

�, (120)

and for the feed-point

J� � FCiF � J�. (121)
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The signs “�” and “�” denote the transfer Ji at the right- and left-hand sides of
the points being considered.

In the two-phase separation methods such as distillation or chemical isotope
exchange, these equations must be complemented by additional expressions char-
acterizing the loading of the volumes of the phase reversal with a given compo-
nent, E(dCt/dt), where E is the delay of substance in the respective volume. The
initial condition must be defined in the form of distribution of component con-
centrations along the cascade length at zero time (t � 0) to solve the boundary
problem

Ci (S,0) �  i (S). (122)

In the simplest case when the cascade is filled with a homogeneous mixture of
composition CiF, the initial condition (122) will be written as follows:

Ci (S,0) � CiF (123)

Therefore, Eq. (117) along with boundary conditions (119–121) and initial
condition (122) define the full set of equations desired to search all concentrations
of the m-th component mixture in every point of the cascade at arbitrary moment
of time.

The modeling of transient processes in a cascade is connected with well-
known difficulties even for the case of separation of binary isotopic mixtures
when the set of Eq. (117) reduces to a single equation in partial derivatives. If the
number of components is more then two, probably the only opportunity to solve
the problem consists of numerical integration of equations that, in turn, suggests
the development of effective algorithms and computing codes.

Known from the literature, approaches to solving this problem are based on
the use of the finite-difference (grid) models as well as the differential models for
equations describing the non-steady processes in the cascades. The former has an
essential disadvantage consisting of the fact that implicit schemes used are rather
stable but require the solution of large sets of nonlinear algebraic equations at ev-
ery time-step to be computed. The use of traditional explicit schemes (free of this
disadvantage) is limited by the inadmissible low value of the integration step by
time (27). The second approach is usually settled by the reason that modern meth-
ods for numerical integration of the ordinary differential equations are better de-
veloped than those used to solve large systems of nonlinear algebraic equations.
The difference models (methods of lines) may be considered the limiting case of
the grid models when one of the grid sizes (the integration step by time) tends to
zero. For example, the boundary problem for cascades with the phase reversal vol-
umes has been reduced (28) by means of the asymptotic transformations to the
Cauchy problem for the system of ordinary differential equations. This permitted
the set of equations to be obtained with well-conditioned matrices of coefficients
admitting for use their solution simple integration methods such as, for example,
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Euler’s method. However, approbation of this technique for the non-reversal sep-
aration methods did not give good results.

Transition to the set of ordinary differential equations has been accom-
plished (29) by changing the spatial derivatives into symmetric finite-difference
relations. The solution of the set obtained is carried out by the Runge-Kutta-Gill
method or similar techniques requiring relatively small integration steps for their
stability. The numerical technique for integration of the set of Eqs. (117)–(122)
free from the above disadvantages was developed (30,31). The gist of the method
is briefly as follows. An absolutely stable method for solution of boundary prob-
lems of the parabolic type equations is described (39). This method is stable for
all kinds of laws at integration steps tending to zero and is known as the DuFort-
Frankel method. The idea is to use symmetric finite-difference relations to ap-
proximate differential equations in partial derivatives. The finite-difference grid
method constructed as analog of the DuFort-Frankel method has been used
(30,31). To make the transition to the finite differences with new variables l � 	0S,
! � 	0t/2h (	0 is the scaling enrichment coefficient defined for the majority of sep-
aration methods as the enrichment coefficient per unit mass difference) the whole
region of integrating is covered by the regular orthogonal grid: 1 � k�(k � 0, 
1, . . . , K), ! � n�!(n � 1, 2, . . .), where � is the integration step by the spatial
variables, �! is the integration step by time, and k is the number of spatial points
in the calculation grid.

The symmetric finite-difference relations approximating derivatives in the
points of the grid are written as follows:

�
�

�

C
l

i
� ��

Cn
i,k�1

2
�

�

Cn
i,k�1

�, (124)

�
�

�

2

l

C
2

i
� � , (125)

�
�
�
C
!
� ��

Ci,k
n�1

�1

2�

�

!

Ci,k
n�1

� (126)

In the points where the feed flow and the flow L(S) are interrupted as well as
at the cascade ends relations (124) are not valid. Here one needs to use the one-side
decompositions with sufficient level of accuracy. The calculations in practice have
shown that the following relations (obtained from superposition of functions Ci de-
composed in the Taylor series in the points with indices k � 1, k � 2, k � 3, and k
� 1, k � 2, k � 3, respectively) for one-side derivatives give satisfactory results:

�
�

�

C
l
i
�

� � , (127)

�
�

�

C
l
i
�

� � . (128)
�2Cn

i,k�3 � 2Cn
i,k�2 � 18Cn

i,k�1 � 11Cn
i,k

�����
6�

2Cn
i,k�3 � 9Cn

i,k�2 � 18Cn
i,k�1 � 11Cn

i,k
����

6�

Cn
i,k�1 � (Ci,k

n�1 � Ci,k
n�1) � Cn

i,k�1
����

�2
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As it follows from expressions (125) and (126), the difference scheme re-
quires additional calculations to determine the value of functions by the second
time layer. These calculations have to be carried out with a higher accuracy than
that required for the rest region. However, when using expressions (123) as initial
conditions, the second time layer will consist of the initial data except 1) the feed-
point, 2) the interruption-points of flow L(S), and 3) the cascade ends. The com-
putation experiments were carried out for the squared-off cascade after determi-
nation of the stability region of this method. The results obtained demonstrated
that the main operating parameters of the cascade weakly influence the stability,
i.e., the technique is reliable and effective within a wide range of problems under
study. The integration step �! is big enough, and its value is of the same order as
�. A comparison of this method with the explicit one-step method having inte-
gration step �! � (�)2 makes clear the advantages of the method for � " 1.

The numerical calculations have shown that both methods are stable within
a wide range of the spatial and time steps of integration. Some results of numeri-
cal experiments for a simple cascade separating tungsten isotopes (Mi � 180, 182,
183, 184, 186) are presented below. Concentrations in the feed flow equaled to
isotope concentrations in the natural mixture: (CiF � 0.0015, 0.2646, 0.1440,
0.3060, 0.2840) in the order of growing mass numbers. The cascade parameters
were chosen as follows:

2W/	0L � 1.538; 2P/	0L � 1.004; lF � 7.5; lP � 8.4.

The calculations were carried out with steps values � � 0.075 and �! � 0.0147.
The stages were numbered in the direction of enrichment of the light species of
isotope mass spectrum. The study was performed for the following cases: 1) open
cascade (with product and waste flows being continuously switched on, W � 0, P
� 0); 2) closed cascade (W � 0, P � 0); and 3) cascade with periodically switched
internal flows (at time moments � 0).

Figure 13 shows the spatial-time distributions of isotope concentrations
with mass numbers 184 and 186 for the open (solid lines) and closed (dashed
lines) cascades. As seen, at the steady state for regime corresponding to P � 0,
components with extreme mass numbers reach the maximum enrichment,
whereas the intermediate components achieve the maximum enrichment in the in-
termediate points of the cascade. The numerical calculations have shown that the
cascade has some inertia to the external perturbations in the initial period of time.
For example, the spatial-time distributions of concentrations for open and closed
cascades in the initial period have similar characteristics (see curves 1 in Fig. 11).
After achieving the steady state, the concentration profiles for these two regimes
substantially differ from each other.

Figure 14 demonstrates the concentration-time histories for isotopes with
mass numbers 184 and 186 (dashed curves) in the point of withdrawal of waste
flow. As seen, although curves 1, 2 and 1�, 2� corresponding to different modes of
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cascade operation do not essentially differ from each other until ! � 0.125. It is
also interesting to note that in the initial part of the transient period, the maximum
rate of substance accumulation and the maximum gradients of concentrations for
components with extreme mass numbers are observed. Besides, a definite quan-
tity of isotopes leaves cascade in the product and the waste flows if the process is
carried out with external flows. The result of combination of these two processes
by taking into account the competitive influence of intermediate mixture compo-
nents (approximately equal concentrations of components is the main feature of
this mixture) is also illustrated by Fig. 14. Here, clearly pronounced maxima and
minima are seen on the curves having an asymptotic feature, which develops only

Figure 13. Spatial-time distribution of components with mass numbers 186 (a) and 184
(b) for open cascade (solid curves); closed cascade (dashed curves) at dimensionless time
! � 1 (1); 3 (2), and � (3).

(a)

(b)
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after a certain period of time. Note also that the steady distribution of concentra-
tions in cascades does not depend on its initial profile. The features of this profile
define only the duration of the transient period.

The results of calculations on separation of binary mixture in the cascades
of constant width (40) have shown that the most expedient way to maximally
shorten the transient period is to operate with constantly switched on waste flow.
The product flow should be switched on only after reaching the calculated value
of concentration. This conclusion appeared to be non-valid for separation of mul-
ticomponent isotope mixtures. The calculations have shown that the deviation of
concentrations in the point of withdrawal of waste flow weakly depends on the
fact of whether the product flow exists or not. However, switching on the product
flow in the time moments t � 0 may increase the duration of transient process (see
curves 4 and 4� in Fig. 14). This can be explained by distribution of concentrations
of intermediate components along the length of the cascade, which have in fact
different profiles for the open and closed cascades (see Fig. 13b).

The methods described can be effectively used in the study of non-steady
mass transfer processes in cascades to minimize the duration of the starting period.
In addition, several original methods for operation during the starting period in-
cluding those based on switching off the product and the waste flows at defined
moments of cascade operation and “operational procedure” (operation with accu-
mulation of the target isotope within the cascade volume) are described by La-
guntsov et al. (32).

Figure 14. Component concentrations with masses 186 and 184 (dashed numbers) plot-
ted vs. dimensionless time ! at points of carrying out P1: 1, 1� for open cascade; 2, 2� for
closed cascade, and closed cascade with constantly switched on P2; 3, 3� and 4, 4� for
switching on P1 at ! � 0.5 and 2.0.
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FUTURE WORK

In conclusion, we would like to distinguish the following problems related
to separation of multicomponent mixtures, which in our opinion are of great the-
oretical and practical importance:

development of theory for separation of multicomponent molecular mix-
tures accompanied by interphase isotope exchange (33,34);

development of theory for calculation of multicomponent non-symmetrical
cascades (14) and “cascades with losses”;

investigation of cascades with a given number of stages to find a non-steady
regime of separation that can provide a higher concentration of the
target isotope in the product flow due to variation of either internal or
external parameters of the cascade such as the product, the waste, and
the feed flows;

development of new calculation methods for optimization of cascades by dif-
ferent criteria such as the total flow, the cascade length, and some others.

Finally, we would like to touch upon the problem of determination of the
value function and separative power of cascades for the multicomponent mixtures.
It is known that the notions of the value function and the separative power in the
case of binary system is based on the non-mixing concept and on the theory of sep-
aration in ideal cascade (41). For practice, these notions permit the minimum
number of separating elements required for carrying out a desired separation to be
estimated. The main difficulty in introducing the value function and the separative
power for multicomponent system is connected with inapplicability in this case of
non-mixing condition (see above).

By using the MARC theory in the case of infinitesimal separation effect de
la Garza et al. (1) derived the multicomponent analogs for “value function” and
“separative power”. Note that these analogs do not allow in general case the min-
imum number of separating elements to be calculated because unlike a bi-compo-
nent ideal cascade, MARC does not minimize the total cascade flow. An attempt
to obtain a common expression for the value function based on different ap-
proaches has been made (42–46). The main result obtained was as follows: the
value function can be generated as the set of terms (Cj � Ci)ln Ci/Cj. In the case
of binary mixture, it reduces to the classic expression V(C) � (2C � 1)ln C/(1 �
C). In the context of the above reasoning, this function is inconvenient for practi-
cal usage, because it is evident now that this problem also requires further study.

It is necessary to note that several recent studies devoted to the further de-
velopment of various techniques for calculation of squared-off cascades have
been published (47–50). Also, in practice of stable isotope production by a gas
centrifuge cascade the problem arising in calculation of a cascade with losses has
been solved in our recent publication (51). The efficiency criterion for separation
of multicomponent isotope mixtures on the basis of the so-called R cascade has
been introduced by Wood et al. (52).
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NOMENCLATURE

n is number of mixture components
Ci is mole fraction of component i in mixture
L is stream of isotope mixture entering cascade stage [mol/s]
S is index number of stage in cascade
N is total number of cascade stages
ƒ is number of stage which feed stream enters in
SP is total number of stages in enriching part of cascade
SW is total number of stages in stripping part of cascade
F is rate of feed flow entering cascade [mol/s]
P is product flow rate being withdrawn from cascade [mol/s]
W is waste flow rate leaving cascade [mol/s]
Mi is molecular mass of component i
Rij is abundance ratio of pair of components i and j
Gi is flux of component i entering stage [mol/s]
Gi

�, Gi
� are fluxes of component i leaving stage [mol/s]

H(S ) is retardation (delay) of flow substance at stage S
Ji is transfer for component i [mol/s]
T is transfer for isotope mixture [mol/s]
t is time [s]

Greek

�ij is stage separation factor for pair of components i and j
�0 is overall separation factor per unit mass difference
	ij is stage enrichment coefficient for pair of components i and j
� is relative error

 is number of iterations
# is cut
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